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Mesenchymal stem cells (MSCs) are multipotent progenitor cells
that participate in the structural and functional maintenance of
connective tissues under normal homeostasis. They also act as
trophic mediators during tissue repair, generating bioactive
molecules that help in tissue regeneration following injury.
MSCs serve comparable roles in cases of malignancy and are
becoming increasingly appreciated as critical components of
the tumor microenvironment. MSCs home to developing
tumors with great affinity, where they exacerbate cancer cell
proliferation, motility, invasion and metastasis, foster
angiogenesis, promote tumor desmoplasia and suppress anti-
tumor immune responses. These multifaceted roles emerge as a
product of reciprocal interactions occurring between MSCs and
cancer cells and serve to alter the tumor milieu, setting into
motion a dynamic co-evolution of both tumor and stromal
tissues that favors tumor progression. Here, we summarize our
current knowledge about the involvement of MSCs in cancer
pathogenesis and review accumulating evidence that have
placed them at the center of the pro-malignant tumor stroma.

Introduction

The study of tumor pathogenesis has, for many years, largely
focused on the accumulation of genetic or epigenetic alterations
intrinsic to cancer cells, while almost entirely disregarding the vital
contributions of the tumor stroma.1 However, in the past decade
or so, studies focused on understanding the complex crosstalk
between cancer cells and the heterogeneous milieu of tumor
stromal cells have allowed for an increased appreciation of the
critical nature of some of these interactions, not only in
supporting, but also in driving tumor growth and progression.2

We now recognize that developing tumors can mobilize a variety
of cell types from both local and distant niches via secreted
chemical factors derived from the cancer cells themselves or from
neighboring cells disrupted by a growing neoplasm.3 These
recruited cells significantly alter the composition of the tumor
milieu and set into motion a complex series of interactions
which result in the co-evolution of both cancer and stromal
compartments.4,5

The stroma of solid cancers contains a variety of mesenchymal
cell types, such as endothelial cells, lymphocytes, macrophages,
neutrophils and cancer-associated fibroblasts, whose contributions
to tumor development have now been extensively characterized
and are the subjects of accompanying reviews in this Special
Focus. More recently appreciated, however, are the contributions
of a class of multipotent mesenchymal progenitor cells found to
reside within the tumor microenvironment called mesenchymal
stem cells (MSCs) (e.g., refs. 6–8). In the last few years, MSCs
have been demonstrated to play important roles in tumor patho-
genesis and are for this reason the subject of intense investigation.

MSCs are a heterogeneous class of self-renewing, multipotent
progenitor cells that reside primarily in the bone marrow, but can
also be found in a variety of other tissues throughout the body.9-14

They display a number of remarkable properties, such as the
tendency to home to sites of injury, the capacity to suppress
immune reactions and the ability to aid in the repair and
regeneration of damaged tissues.15-17 Accordingly, MSCs have
been explored widely for their applications in regenerative
medicine and as delivery vehicles for use in gene therapy.18

In the context of cancer, MSCs are becoming increasingly
recognized as important stromal facilitators of tumor develop-
ment. Indeed, MSCs display avid tropism for developing tumors,
akin to their abilities to home to wounded tissues19 and are
integral components of the cancer stroma in experimental as well
as in clinical settings (e.g., refs. 6, 7 and 20–22). Furthermore,
numerous studies have now demonstrated that human MSCs
enhance tumor growth and/or metastatic progression in neoplasias
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arising from a wide range of tissues.23-34 Although the specifics of
the mechanisms by which MSCs enhance tumor progression and
metastasis are only beginning to be understood, their reported
influences can now be generally classified into four broad
functional categories. First, MSCs within the tumor stroma may
exert direct paracrine influences on the cancer cells, promoting
tumor proliferation, invasion and metastasis (e.g., ref. 21).
Second, tumor-associated MSCs may exert indirect pro-malignant
actions by promoting tumor angiogenesis through recruitment of
endothelial progenitor cells and by facilitating the formation and
maturation of tumor vasculature (e.g., refs. 35 and 36). Third, by
virtue of their progenitor status, MSCs may respond to the
panoply of signals and cues present in the tumor microenviron-
ment by differentiating into other types of stromal cells. For
example, MSCs have been reported to differentiate into cancer-
activated fibroblasts (CAFs), which can in turn influence tumor
development.37,38 Fourth, stromal MSCs may exert immunomo-
dulatory properties that protect the tumor cells from detection
and destruction by the adaptive immune system, functions that
can be manifested through the direct or indirect actions of MSCs
on various immune cells (reviewed in ref. 39). Because of these
activities, MSCs are becoming increasingly accepted as important
contributors to tumor progression, likely representing a critical
component of the tumor-associated stroma. Here, we briefly
expand on these themes and summarize recent efforts in
elucidating the mechanisms by which these stromal stem cells
contribute to tumor pathogenesis.

Identification and Characterization of MSCs

The initial characterization of MSCs dates to the observations of
Friedenstein and colleagues, who cultured and propagated bone-
marrow-derived non-hematopoietic cells that had the potential to
give rise to bone and cartilage40 (reviewed in ref. 41). These
findings were reproduced by further studies in the subsequent
years42-48 and paved the way toward the definitive identification of
multipotent stem cells within heterogeneous human MSC
cultures.41,49 These cells exhibited phenotypic properties that
were unambiguously distinct from those of hematopoietic stem
cells (HSCs) or endothelial progenitor cells.50

MSCs are classically characterized by their tri-lineage differen-
tiation potential into osteoblasts, chondrocytes and adipo-
cytes.51,52 However, they also possess additional differentiation
potentials and have been shown to give rise to myoblasts,
endothelial cells, pericytes or fibroblasts and have more recently
been reported to generate non-mesenchymal cells as well, such
as epithelial cells, hepatocytes or even neuronal cells.49,53-56

Phenotypically, they are plastic-adherent fibroblastic cells that
express the cell surface antigens CD29, CD44, CD49, CD73,
CD90, CD105, CD106, CD140b, CD166 and STRO-1, but
lack key hematopoietic markers such as CD11b, CD14, CD19,
CD31, CD34, CD45 and CD133.52,57 Using these markers,
researchers have been able to isolate MSCs or MSC-like cells from
multiple tissues, including peripheral blood, adipose tissue,
umbilical cord blood, fetal liver, lung, amniotic fluid, synovial
fluid and gingival tissue.9,13,14,58-61 Genotypically, MSCs derived

from different tissue sources appear to exhibit different expression
levels of the embryonic-stem-cell-associated pluripotency factors
NANOG, OCT-4 and/or SOX2.62,63 However, the functional
contribution of such transcription factors to the proliferative and
differentiation capacities of MSCs is still a matter of active debate
(e.g., refs. 64 and 65).

MSCs in Wound Responses

MSCs play important roles in maintaining normal tissue
homeostasis under resting conditions. These activities include
the regulation of vital processes, such as hematopoiesis,49,66,67 the
preservation of blood vessel integrity68 or bone maintenance.69

More appreciated, however, are the functions of MSCs in cases of
wound healing and tissue repair.70 In these respects, current
models suggest that MSCs are dispatched from their niches in
response to systemic signals derived from injured tissues (e.g.,
ref. 71). The subsequent integration of the mobilized MSCs
within these tissues is thought to provide an environment
conducive to tissue rejuvenation and wound closure.

The “healing” functions of MSCs appear to be manifested via
three key activities. First, an ability, by virtue of their plasticity, to
differentiate on site to replenish tissues lost during injury. This is
especially apparent in osteochondral disorders, where the
differentiation of MSCs into chondrocytes or osteoblasts may,
at least partly, contribute to the repair of these tissues (reviewed in
ref. 48). Second, MSCs may exert their actions through the release
of trophic factors that contribute to tissue regeneration by
stimulating the activation of local tissue-specific stem cells. For
instance, MSCs have been suggested to enhance the proliferation
of local cardiac stem cells in heart infarction models.72 Third and
importantly, MSCs appear to promote immunosuppressive
environments capable of inhibiting the functions of the adaptive
immune system. In fact, MSCs cause the formation of
T-regulatory cells (T-regs) in the context of inflammation73 and
have been shown to inhibit other aspects of immune cell
functions, such as antibody release74 and dendritic cell matura-
tion.75,76 While these aforementioned activities entail the local
engraftment of MSCs in sites of wounding, new evidence
indicates that MSCs may not even need to engraft locally at the
wounded sites in order to enhance tissue repair, suggesting that
they may also exert actions at a distance.77-79

Due to their increased avidity to wounds in experimental
models, as well as their differentiation versatility, MSCs are being
heavily explored for applications in regenerative medicine80 and
hold great clinical promise for the treatment of a number of
diseases in a wide variety of tissues, including osteochondral
diseases,81,82 cardiovascular diseases,83,84 liver disease,85 renal
diseases,86 spinal cord injuries,87 immunosuppression to benefit
organ transplantion88 and neurodegenerative diseases.89,90

MSC Homing to Tumors

Growing tumors continuously remodel local tissue architecture
and generate chronic inflammatory responses similar to those
evoked by open wounds.19 Accordingly, it is believed that MSCs
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migrate into tumors in a manner similar to the way they migrate
into injured tissues.91 Indeed, MSCs introduced into the systemic
circulation of tumor-bearing animals exhibit avid and preferential
homing to cancerous growths, with limited homing to other
tissues.20,21 This preferential migration has now been convincingly
demonstrated in a number of xenograft models, such as
melanoma,92 ovarian carcinoma,93 breast carcinomas21 and
hepatocellular carcinomas94 and has been described in detail
using enhanced detection methods for tracking injected MSCs.22

Importantly, endogenous MSCs have been recovered from the
stroma of both experimental xenograft tumors21 and human
tumors,6,7 suggesting that cancer development entails the
continuous recruitment of MSCs, which may maintain steady-
state levels within tumor stroma.

The prevalent model of MSC recruitment into tumors
describes their mobilization from systemic niches, ostensibly in
the bone marrow,95 and their subsequent homing to cancer
growths in response to chemotactic agents emitted by cancer cells.
Although much remains to be proven about the molecular details
underlying such a model, accumulating research has begun
cataloging the molecules that control the avidity of MSCs to
tumor sites. The list of soluble factors governing MSC
recruitment to tumors is growing at a fast pace. Early on, due
to the high affinity of HSCs and their leukocyte progeny for
wound and tumor sites, investigators looked to the already well-
characterized processes of HSC and leukocyte homing for clues
driving MSC migration.96,97 Indeed, factors involved in HSC and
immunocyte recruitment, such as monocyte chemotactic protein-
1 (MCP-1),98 stromal-cell derived factor (SDF-1),99 cyclophilin B
and hepatoma-derived growth factor (HDGF),100 urokinase
plasminogen activator (uPA),101,102 interleukin (IL-)6,103 basic
fibroblast growth factor (bFGF)104 and vascular endothelial
growth factor (VEGF)104 have all been implicated in driving the
tropism of bone-marrow-derived MSCs to tumors. It is believed
that an active inflammatory response is necessary to allow MSC
recruitment to tumor sites.91 Many such factors, produced as a
result of tissue damage or growing neoplasms, exhibit chemo-
attractant properties toward MSCs in vitro and include bFGF,105

VEGF,106 platelet-derived growth factor (PDGF), insulin-like
growth factor (IGF) and variety of other growth factors such as
transforming growth factor (TGFβ),107 chemokines and cyto-
kines,108 cathelicidin (LL-37)109 and even complement compo-
nents C3a and C5a.110 Non-neural cholinergic mediators111 and
dopamine derived from innervating sympathetic nerves have also
recently been implicated in MSC homing to wound sites.112 It is
important to note, however, that the inhibition of the actions of
any one single factor does not appear to be sufficient to
completely disrupt MSC homing to tumors, suggesting that
multiple concerted mechanisms cooperate in regulating their
tropism to tumor growths.113

MSCs derived from non-bone-marrow sources also possess the
abilities to home to tumors and appear to respond to chemotactic
signals emitted by cancer cells just as well as bone-marrow-derived
MSCs. For example, umbilical-cord-derived MSCs home to
medulloblastoma cells in response to matrix metalloproteases
(MMP)-299 and adipose-derived stromal cells can contribute to

the malignancy of cancer cell lines derived from a number of
different tissues.26-29,114 These observations challenge the current
dogma that tumor-associated MSCs are derived solely from bone
marrow sources and raise the notion that other MSC-rich tissues
(such as adipose tissue) may also contribute to the pools of certain
tumor stromal MSCs.

A critical component of the homing of MSCs to cancer sites is
their ability to execute transmigration through the endothelial
cells of the vessel wall. How MSCs interact specifically with
endothelial cells is an area that is receiving a lot of attention and is
starting to be illuminated with increasing molecular clarity. The
identification of the adhesion molecules and surface receptors that
guide the vascular adhesion of MSCs has been aided by
comparisons to the similar activities of HSCs and leukocytes
(reviewed in ref. 115). Like hematopoietic cells, MSCs appear to
utilize E-selectin for vascular adhesion, but lack other hemato-
poietic cell adhesion molecules such as L-selectin, β2 integrins and
platelet endothelial cell adhesion molecule-1 (PECAM-1)/CD34
that facilitate the rolling of HSCs on vasculature and their
subsequent transmigration through the endothelial wall.116

Alternatively, other sets of adhesion molecules, such as endothe-
lial-cell-expressed P-selectin, which can interact with CD44 on
the surface of MSCs,117 or vascular cell adhesion molecule-1
(VCAM-1),118 C3a, C5a110 and C-X-C motif chemokine 5
(CXCL5)119 have all been shown to be important for MSC
extravasation across endothelial barriers. Finally, a prominent
mechanism reported to control the efficiency of transendothelial
migration of MSCs is shear stress. Indeed, low-shear conditions
cause the downregulation of certain chemokine receptors, such as
C-X-C motif chemokine receptors (CXCR) 3 and 6 and C-C
chemokine receptors (CCR) 6 and 9 in cells crossing the aortic
endothelial barrier,120 while high shear-stress conditions appear to
cause the upregulation of integrins in MSCs adhering on
endothelial ligands.116

While the specifics regarding MSC homing to tumor sites are
still being investigated, new evidence suggests that stromal cells
also participate in MSC recruitment into tumors. For example,
cancer-associated fibroblasts (CAFs) reported to be derived from
MSCs in the context of gastric cancers have been shown to further
recruit primitive MSCs from the bone marrow via the secretion of
SDF-1.37,38 This raises the notion that the homing and integration
of MSCs into tumors may initiate a vicious cycle, causing further
recruitment of MSCs, thereby maintaining their numbers in
tumor stroma and sustaining their contributions to tumor
pathogenesis.

MSCs in Tumor Pathogenesis

The contributions of tumor-associated MSCs to cancer develop-
ment have been the subject of intense investigations. While
certain studies suggest that MSCs play tumor-suppressive roles
(e.g., ref. 121), they are outnumbered by an overwhelming
literature that has incriminated MSCs in serving tumor-
promoting functions and in a wide range of cancer models.
Indeed, MSCs have now been demonstrated to serve
pro-malignant roles in a number of epithelial cancer subtypes,
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such as breast,21,27 colon,25,30 lung,26,32 skin23,24,29 or prostate.28,31

MSCs have also been shown to drive hematopoietic malignancies,
such as multiple myeloma,122,123 and appear to sustain leukemia/
lymphoma development.124 Finally, MSCs have recently been
found to promote the progression of certain mesenchymal cancers
as well, such as osteosarcomas, which are thought themselves to
arise, in part, from the neoplastic transformation of MSC
lineages34 (discussed in more detail below).

As their roles in tumor pathogenesis are still being charac-
terized in detail, several major mechanisms through which MSCs
contribute to tumor development are emerging. First, MSCs exert
direct actions on the cancer cells through the secretion of a variety
of bioactive molecules whose paracrine actions influence the
phenotype of the cancer cells. Second, the immunosuppressive
properties of MSCs, as described above, alter the local com-
position of immunocytes and derail immune reactions that are
mounted against malignant cells, therefore providing an immune-
privileged environment for neoplastic cells. Third, MSCs can
influence tumor vascularization by exacerbating tumor angiogen-
esis. Fourth and finally, as progenitor cells, tumor-associated
MSCs have been reported to differentiate within the tumor
microenvironment and act as local sources for other tumor
stromal cells, such as tumor-associated fibroblasts (TAFs). In the
following sections, we will summarize the current knowledge
pertaining to each of these mechanisms and explore in more detail
the varied functions of tumor-associated MSCs in tumor biology.

Direct actions of MSCs on cancer cells. MSCs produce a
plethora of molecules, such as chemokines, cytokines and growth
factors, which act in a paracrine fashion on their respective
receptors on the surface of cancer cells, thereby regulating tumor
growth and/or progression. For example, MSC-derived chemo-
kines, such as CXCL1, CXCL2 or CXCL12/SDF-1, have been
shown to foster cancer cell proliferation in a number of cancer
models via their actions on their respective CXCR2 and CXCR4
receptors on cancer cells.125,126 Similarly, cytokines secreted by
MSCs, which include IL-6 and IL-8, have been demonstrated to
enhance cancer cell malignancy in the context of several cancers,
such as breast6 or colorectal.127 Finally, MSC-derived growth
factors, such as epidermal growth factor (EGF), act on their
cognate receptors on the surface of cancer cells, enhancing
tumorigenesis in the setting of breast cancer.8

While the list of MSC-derived peptide messengers is expand-
ing, it is important to note that MSCs can also provide additional
agents/materials that can act on the cancer cells in a paracrine
fashion. In these respects, new research suggests that nucleic acids
are effectively transferred from MSCs to cancer cells, potentially
via mRNA- and/or microRNA-rich microvesicles128 or through
gap junctions established following physical interactions between
the two cell types.129 These observations suggest that cancer cells
effectively respond to the innate abilities of MSCs to produce and
secrete a rich and vast array of bioactive molecules that can
influence the course of tumor development.

In concert with the rich set of bioactive molecules they
“normally” generate, MSCs respond to the contextual signals
emanating from the cancer cells in their microenvironment by
initiating de novo secretion of soluble factors that impact tumor

pathogenesis.21 Of note in this regard is the de novo ability of
MSCs to produce the chemokine CCL5 upon stimulation by
breast cancer cells.21 Here, CCL5 mRNA levels (and subsequently
protein levels as well) in the MSCs are induced by . 1,000 times
upon their physical contact with the cancer cells. CCL5 then acts
in a paracrine fashion on the cancer cells, fostering metastasis by
increasing their ability to extravasate into lung parenchyma in
experimental models.21 Interestingly, not all cancer cells possessed
the ability to instigate CCL5 from the MSCs, lending credence to
the notion that idiosyncratic differences exist between cancer cells
(and the way in which they respond to interactions with MSCs)
even within the same tumor subtype. Similarly, the interaction of
MSCs with lung cancer cell lines was found to cause
stanniocalcin-1 (STC-1) secretion by the activated MSCs, which
in turn upregulates uncoupling protein 2 to protect the
neighboring cancer cells from ROS-induced apoptosis.130,131

Taken together, these findings raise the notion that contextual
signals control the manner of MSC activation and, accordingly,
may regulate their functions within the tumor microenvironment
(discussed in more detail below).

The transcriptional, secretory and phenotypic changes induced
in MSCs following their interactions with cancer cells likely
underlie some of the tumor-beneficial effects they potentiate
while contributing to the dynamic evolution of the tumor
stroma. However, it is important to note that cancer cells also
undergo phenotypic and transcriptional changes as a result of
their interactions with MSCs. A gamut of different MSC-
instigated signal transduction pathways have been studied and
they regulate vital machineries in the cancer cells, such as cell
cycle/proliferation,8,125,129 but also several phenotypes associated
with malignancy, such as motility,21,125,126,132 invasion21,133 and
metastasis.21,27,30,134

In this regard, three important MSC-fostered cancer pheno-
types deserve particular mention: (1) the ability of MSCs to
regulate cancer stem cells (CSCs)—cells with increased tumor-
initiating abilities (reviewed in ref. 135), (2) their ability to
enhance the resistance of cancer cells to chemotherapy and (3) the
ability of MSCs to drive the metastatic predilection of cancer cells
to certain tissues, such as the bone. Indeed, recent studies have
found that labeled human MSCs injected into mouse tibias
homed to sites of growing orthotopic breast cancer xenografts and
increased the population of cancer stem cells (CSCs) via the
paracrine actions of IL-6 and CXCL7.6 Similarly, tumor-
associated MSCs were found to enhance the generation of cancer
stem cells in ovarian carcinoma, in this case, via BMP2 signaling.7

Along similar lines, MSCs have been described to play a role in
cancer-cell-resistance to classical chemotherapy. For example,
MSCs were found to protect lung cancer cells from apoptosis as a
result of oxidative or chemotherapeutic stress.130 Furthermore,
endogenous human MSCs were found to protect tumor cells
against chemotherapeutic agents by secreting chemoprotectant
polyunsaturated fatty acids in response to activation by platinum
analog,136 an action they exert at a distance, without the need to
engraft within tumors. Finally, strong evidence suggests that
MSCs may preferentially drive tumor metastasis to the bone
(e.g., ref. 137), through mechanisms that involve, in part,
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MSC-derived IL17BR.33 Although the molecular underpinnings
of the abilities of MSCs to regulate these three phenotypes have
not been fully determined, some evidence suggests that the
mechanisms underlying such activities may at least be inter-
related. Indeed, CSCs and cancer cells resident in bone exhibit
increased resistance to chemotherapy and are refractory to tumor
irradiation.138

Immunosuppressive properties of MSCs. MSCs act as
immune modulators with reported activities in suppressing both
innate and adaptive immune responses (reviewed in refs. 77 and
139). Indeed, their ability to quell the immune system is so
potent, it has been exploited to reduce the severity of graft vs. host
disease (GvHD).140-142 MSCs appear to modulate immune
responses via differential influences they exert on the proliferative
capacities of immune cells. For example, MSCs inhibit the
proliferation and maturation of B-cells74 as well as natural killer
cells,143-145 while exhibiting protective activities toward other cells,
such as neutrophils.146 In similar respects, MSCs have been shown
to directly inhibit both CD4+ and CD8+ T-cell proliferation,147

suggesting that MSCs can influence the behavior of almost all of
the key immune activities involved in tumor development.

The exact molecular details of how MSCs exert these
immunomodulatory functions are only partially characterized.
Several mechanisms of action appear to involve their innate or
stimulated abilities to secrete cytokines and chemokines, which
suppress immune cell proliferation or activation.77,148 For
example, MSC-derived interferon-gamma was found to be
sufficient in suppressing T-cell effector functions in a number
of settings.149 Furthermore, stimulation of Toll-like receptor
(TLR)-3 and -4 present on the surface of MSCs leads to the
production of IL-6, IL-8 and CXCL10, which were critical for the
suppression of T-cell proliferation.150 MSCs may also indirectly
quell T-cell proliferation by influencing dendritic cell (DC)
proliferation and maturation.75,76,151-153 This is accomplished, in
part, by MSCs driving DC differentiation into a subtype
incapable of stimulating T-cell expansion.148

Finally and perhaps most importantly, MSCs can direct T-cells
to differentiate into T-reg, which, in the case of tumors, can
confer growth and metastatic advantages.139,154,155 These advant-
ages are manifested through T-reg-mediated suppression of
normal innate and adaptive immune responses, including the
direct inactivation of effector T-cells and NK cells (reviewed in
ref. 156). Although the mechanisms underlying the MSC
mediated generation of T-regs is still under investigation, this
process appears to involve MSC-secreted TGFβ1.157 Taken
together the immune-suppressive effects of MSCs are rather
extensive and perhaps unrivaled by any other stromal cell type
and constitute crucial protective mechanisms by which MSCs
contribute to tumor growth and progression.

MSCs in tumor angiogenesis. MSCs play multifaceted roles in
fostering tissue revascularization after injury and appear to serve
similar pro-angiogenic functions in the setting of tumor
development (reviewed in ref. 158). Indeed, MSCs (or their
reported progeny; discussed below) may promote tumor neo-
angiogenesis via the secretion/production of angiogenic factors,
such as VEGF-A, angiopoietins, EGF, keratinocyte growth factor

(KGF), IGF-1 and galectin-1159,160 and are involved in the recruit-
ment of endothelial cells and in promoting the maturation of
newly-formed blood vessels (e.g., refs. 32 and 161). Furthermore,
MSCs themselves have been shown to be able to differentiate
into endothelial-like cells and share cell surface markers with
pericytes, thereby modulating the tumor vasculature.162,163 Con-
versely, vascular endothelial cells have been recently reported to
convert into cells with characteristic properties of MSCs,164

suggesting that endothelial-to-mesenchymal or mesenchymal-to-
endothelial transformations may be possible in the context of
tumorigenesis. These observations highlight important roles for
MSCs in supporting tumor vascularization and suggest that
targeting MSCs may be a viable avenue in anti-angiogenesis-
based cancer therapy.

MSCs as progenitors for tumor stroma. As mentioned above,
the crosstalk operating between cancer cells and tumor-associated
MSCs changes not only the cancer cells, but the MSCs as well.
In these respects, the tumor microenvironment may affect, in
addition to the properties of tumor-associated MSCs, their
differentiation capacities. In fact, some evidence suggests that
MSCs trans-differentiate within tumors to give rise to cancer
associated fibroblasts (CAFs; see refs. 165 and 166).

CAFs have been increasingly appreciated in the last ten years as
the importance of the stroma in tumor development has become
more evident (e.g., refs. 167 and 168). They have been associated
with poor patient prognosis169,170 and are implicated in serving a
multitude of pro-malignant activities, including, for example, the
ability to enhance angiogenesis and to foster ECM remodeling
(reviewed in ref. 171). The notion that MSCs generate CAF
populations is highly interesting and holds the potential of
shedding much needed light on the origin(s) of CAFs and on the
fate of MSCs once recruited into the tumor microenvironment. A
cautionary note, however, is that much of the markers associated
with CAFs (such as SMA) are already present, to a certain extent,
in the MSC populations. Accordingly, it remains to be
determined whether the described conversion of MSCs to CAFs
is due to the selection of pre-existing cells (e.g., by TGFβ165) or
whether it results from the bona fide stable differentiation of
MSCs into CAFs. Improved and unique functional determina-
tions for the CAF phenotype, along with improved and unique
markers characterizing MSCs will be instrumental in clarifying the
potential inter-relationship of CAFs to MSCs.

MSCs as Cells-of-Origin for Cancer

MSCs may represent the cell-of-origin for certain sarcomas, such
as Ewing’s family sarcomas (reviewed in ref. 172). Indeed, a
number of observations suggested that the expression of the
fusion product between FLI-1 (a member of the E-26 family of
transcription factors or ETS genes) and the EWS DNA-binding
domain, can cause the transformation of MSCs into Ewing
sarcoma cells.173 First, established sarcoma lines in which EWS-
FLI-1 was silenced reverted back to a transcriptional program
resembling that of MSCs.174 Second, revertants regained a pro-
genitor status and were capable of differentiating into osteoblasts
and adipocytes, corroborating their origins as MSCs. Third, this
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activity appears to be restricted to the highly tumorigenic cancer-
stem-cell-rich CD133-positive sarcoma cells, which expresses a
series of stem-cell-associated genes, such as NANOG and OCT-
4.175 Along the same lines, the transformation of human MSCs
by ectopic expression of other sarcoma-associated oncogenes,
such as the synovial sarcoma translocated gene product (SYT-
SSX1) or the FUS-CHOP gene product, generated cells with
the ability to form synovial sarcomas176 or myxoid liposarco-
mas,177 respectively. Together, these observations suggest that
MSCs may very well lie at the origin of multiple sarcomas and
that they may be the targets of oncogenic transformation in
human disease.

It is noteworthy to add that MSCs have also been directly
incriminated in initiating epithelial cancers. Of note is the report
by Houghton and colleagues who showed that bone-marrow-
derived MSCs initiate gastric cancers by fusing with mucosal cells
in a setting of Helicobacter pylori infection.178 Whether MSCs
also give rise to other cancers is yet undetermined.

Final Notes and Future Perspectives

The involvement of MSCs in tumor biology has attracted
increased attention as of late and the knowledge regarding their
biological attributes, their influence on cancer cells and their roles
in human cancer pathogenesis is mounting at a fast pace. With
this renewed interest comes the promise that such ongoing efforts
will bring forth further insights into the still-enigmatic biology of
these progenitor cells and the manners with which they impact
human cancer development.

In these regards, some of the most important questions pertain
to the origin(s) of tumor-associated MSCs. Indeed, whether
tumor-associated stromal MSCs derive primarily from bone
marrow niches or whether they arrive just as frequently from local
reservoirs (similar in many ways to bone-marrow- and tissue-
resident pools of hematopoietic stem/progenitor cells) is still
unaddressed. This is of particular interest as MSCs derived from
different sources do display some differences in the detailed

Figure 1. MSCs in tumor pathogenesis. Initial systemic factors released by tumor cells or by the disrupted surrounding tissues cause MSC mobilization
and recruitment into tumors; MSCs cross vessel walls and home into cancers. MSC-derived trophic factors, including growth factors, chemokines and
cytokines influence cancer cell phenotypes. The crosstalk between MSCs and cancer cells fosters remodeling of the tumor microenvironment and
impacts other stromal cell types, including immune cells, enhances angiogenesis and/or permeabilization of the vasculature, causes cancer cell growth,
local invasion and metastasis. Systemic factors derived from these interactions may influence distal sites/tissues, including secondary colonization sites.
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mechanisms through which they support tumor development.
Accordingly, the possibility that tumors may harbor MSCs
derived from different anatomical origins raises the notion of
whether these stromal stem cells contribute to tumor hetero-
geneity by fostering the evolution of cancer cells they come in
contact with along different molecular paths.

Two additional important and interrelated questions that
remain to be fully addressed are the degree of plasticity of MSCs
once present in the tumor microenvironment and the lack of
unique markers with which to distinguish them apart from other
stromal cells within tumors. Although increased attention is now
focused on the involvement of MSCs in tumor pathogenesis, the
field is still complicated by the disparate methodologies still used
across many labs to isolate MSCs from (healthy) donors, which
contribute to such isolates being invariably different from one
another across labs and clinics. The identification of unique MSC
markers would, ostensibly, enable researchers to more uniformly
determine the differentiation/stem states of MSC preparations
derived from different tissues and importantly, would permit the
attribution of their influences on tumor initiation and progression
to the respective representation of such differentiated and/or
stem cells within the original cultures. An attempt at placing a
hierarchical relation between different MSCs has been performed

recently and has proven to bear functional consequences on
tumor development.5

In closing, MSCs appear to reside at the center of a complex
crosstalk of interactions that drive the co-evolution of non-
transformed stromal cells and neoplastic cells alike. These pathways
now include a mounting number of interacting players and
processes, summarized in Figure 1. The critical players essential
for this crosstalk are only just beginning to be identified and have
already been shown to control key features of cancer malignancy,
such as stemness and metastasis. As they are, novel and beneficial
anti-neoplastic approaches based on interdicting the crosstalk
between MSCs and cancer cells will undoubtedly emerge.
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